1. Calculus of variation

Definition 1. We define a symmetric positive mollifier $\eta: \mathbb{R}^{n} \rightarrow \mathbb{R}$ by

$$
\eta(\vec{x})= \begin{cases}c_{n} \exp \left(-\frac{1}{1-\|\vec{x}\|^{2}}\right), & \text { if }\|\vec{x}\|<1 \tag{1}\\ 0, & \text { if }\|\vec{x}\| \geqslant 1,\end{cases}
$$

where c_{n} is the constant satisfying $\int_{\mathbb{R}^{n}} \eta(\vec{x}) d \vec{x}=1$.
In addition, given $\epsilon>0$ we define

$$
\begin{equation*}
\eta_{\epsilon}(\vec{x})=\epsilon^{-n} \eta\left(\epsilon^{-1} \vec{x}\right) . \tag{2}
\end{equation*}
$$

Theorem 2. Let $u: \bar{\Omega} \rightarrow \mathbb{R}$ be a smooth function. Suppose that

$$
\begin{equation*}
\int_{\Omega}\|\nabla u\|^{2} d x \leqslant \int_{\Omega}\|\nabla v\|^{2} d x \tag{3}
\end{equation*}
$$

holds for all smooth functions $v: \bar{\Omega} \rightarrow \mathbb{R}$ satisfying $u=v$ on $\partial \Omega$. Then, $\Delta u=0$ holds in $\bar{\Omega}$.
Proof. Since u is smooth, Δu is continuous. Hence, it is enough to show $\Delta u(\vec{y})=0$ at each interior point $y \in \Omega$.

Towards a contradiction, we assume that $\Delta u(\vec{y})>0$. Then, there exists some small $\epsilon>0$ such that $\Delta u(\vec{x})>0$ holds for $\vec{x} \in B_{\epsilon}(\vec{y}) \subset \Omega$. We define $\varphi(\vec{x})=\eta_{\epsilon}(\vec{x}-\vec{y})$ and $u_{s}=u+s \varphi$ for each $s \in \mathbb{R}$. Then, we can define a smooth function $I: \mathbb{R} \rightarrow \mathbb{R}$ by

$$
\begin{equation*}
I(s)=\int_{\Omega}\left\|\nabla u_{s}\right\|^{2} d \vec{x} \tag{4}
\end{equation*}
$$

Since u_{s} is smooth and satisfies $u_{s}=u$ on $\partial \Omega$, we have $I(0) \leqslant I(s)$ for all $s \in \mathbb{R}$. Thus, $I^{\prime}(0)=0$. On the other hand, we can directly calculate

$$
\begin{equation*}
I^{\prime}(s)=\frac{d}{d s} \int_{\Omega}\|\nabla u\|^{2}+2 s \nabla u \cdot \nabla \varphi+s^{2}\|\nabla \varphi\|^{2} d \vec{x}=\int_{\Omega} 2 \nabla u \cdot \nabla \varphi+2 s\|\nabla \varphi\|^{2} d \vec{x} . \tag{5}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
0=I^{\prime}(0)=2 \int_{\Omega} \nabla u \cdot \nabla \varphi d \vec{x}=2 \int_{\Omega} \varphi \Delta u d \vec{x} \tag{6}
\end{equation*}
$$

Hence, by definition of the mollifier η, we have

$$
\begin{equation*}
0=2 \int_{B_{\epsilon}(\vec{y})} \varphi(\vec{x}) \Delta u(\vec{x}) d \vec{x} \tag{7}
\end{equation*}
$$

However, in the ball $B_{\epsilon}(\vec{y})$, we know $\varphi>0$ and $\Delta u>0$, which contradicts to the equation above. Namely, Δu can not be positive everywhere. In the same manner, Δu can not be negative everywhere, and thus $\Delta u=0$.

2. Elliptic equation

Given functions $a_{i j}(\vec{x}), b_{i}(\vec{x}), c(\vec{x})$ defined over $\bar{\Omega}$, we define a linear differential operator \mathcal{L} by

$$
\begin{equation*}
\mathcal{L} u=\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i j}(\vec{x}) u_{i j}(\vec{x})+\sum_{i=1}^{n} b_{i}(\vec{x}) u_{i}(\vec{x})+c(\vec{x}) u(\vec{x}) . \tag{8}
\end{equation*}
$$

Suppose that there exists two positive constant $0<\lambda \leqslant \Lambda$ such that

$$
\begin{equation*}
\lambda\|\xi\|^{2} \leqslant \sum_{i=1}^{n} \sum_{j=1}^{n} a_{i j}(\vec{x}) \xi_{i} \xi_{j} \leqslant \Lambda\|\xi\|^{2}, \tag{9}
\end{equation*}
$$

holds for all $x \in \bar{\Omega}$ and $\xi \in \mathbb{R}^{n}$. Then, we call \mathcal{L} is an uniformly elliptic operator. In addition, given a function $f: \bar{\Omega} \rightarrow \mathbb{R}$

$$
\begin{equation*}
\mathcal{L} u=f, \tag{10}
\end{equation*}
$$

is called a second order linear (uniformly) elliptic partial differential equation.

Definition 3. Given a vector $v \in \mathbb{R}^{n}$, we define directional derivatives u_{v} and $u_{v v}$ by

$$
\begin{equation*}
u_{v}=v \cdot \nabla u=v^{T} \nabla u, \quad u_{v v}=v^{T}\left(\nabla^{2} u\right) v, \tag{11}
\end{equation*}
$$

where $\nabla^{2} u$ is the Hessian matrix.

We recall some fact from linear algebra.
Proposition 4. Let $A=\left(a_{i j}\right)$ be a symmetric square matrix. Then, A is diagonalizable and has orthonormal eigenvectors v_{1}, \cdots, v_{n} and corresponding real eigenvalues $\lambda_{1}, \cdots, \lambda_{n}$. In particular,

$$
\begin{equation*}
A=\sum_{i} \lambda_{k} v_{k} v_{k}^{T} \tag{12}
\end{equation*}
$$

Moreover, we can check

Proposition 5.

$$
\begin{equation*}
\sum_{i, j} a_{i j} u_{i j}=\sum_{i} \lambda_{i} u_{v_{i} v_{i}} . \tag{13}
\end{equation*}
$$

Proof. (12) says $a_{i j}=\sum_{k} \lambda v_{k}^{i} v_{k}^{j}$ where $v_{k}=\left(v_{k}^{1}, \cdots, v_{k}^{n}\right) \in \mathbb{R} \times \cdots \times \mathbb{R}$. Hence,

$$
\begin{equation*}
\sum_{i, j} a_{i j} u_{i j}=\sum_{i, j, k} \lambda v_{k}^{i} v_{k}^{j} u_{i j}=\sum_{k} \lambda_{k} u_{v_{k} v_{k}} . \tag{14}
\end{equation*}
$$

Theorem 6 (Maximum principle). Let $a_{i j}(\vec{x}), b_{i}(\vec{x}), c(\vec{x})$ be smooth in $\bar{\Omega}$. Suppose $a_{i j}(\vec{x})=a_{j i}(\vec{x})$ and $c(\vec{x}) \leqslant 0$ holds for all $\vec{x} \in \bar{\Omega}$. In addition, there exists some positive number $\lambda>0$ such that $\sum_{i, j} a_{i j}(\vec{x}) \xi_{i} \xi_{j} \geqslant \lambda|\xi|^{2}$ holds for all $\vec{x} \in \Omega$ and $\xi \in \mathbb{R}^{n}$.

Suppose that a smooth function $u: \bar{\Omega} \rightarrow \mathbb{R}$ satisfies $\mathcal{L} u \geqslant 0$ in $\bar{\Omega}$ and $u \leqslant 0$ holds on $\partial \Omega$. Then, $u \leqslant 0$ holds in $\bar{\Omega}$.

Proof. We consider a smooth function $\varphi(\vec{x})=\exp \left(\alpha x_{1}\right)$ for some large enough α to be determined. Since $a_{11}(\vec{x}) \geqslant \lambda>0$ for all $\vec{x} \in \bar{\Omega}$, we have

$$
\begin{equation*}
\mathcal{L} \varphi=a_{11} \alpha^{2}+b_{1} \alpha+c \geqslant \lambda \alpha^{2}+b_{1} \alpha+c . \tag{15}
\end{equation*}
$$

b_{1} and c are continuous and thus bounded. Therefore, there exists some large enough α depending on $\lambda, \max \left|b_{1}\right|, \max |c|$ such that $\mathcal{L} \varphi>0$.

Now, we fix α and define $K=1+\max _{\bar{\Omega}} \varphi$. For each $\epsilon>0$, we define $w^{\epsilon}=u+\epsilon(\varphi-K)$, and observe that

$$
\begin{equation*}
\mathcal{L} w^{\epsilon}=\mathcal{L} u+\epsilon \mathcal{L} \varphi>0, \tag{16}
\end{equation*}
$$

holds in $\bar{\Omega}$ and $w^{\epsilon}<u \leqslant 0$ holds on $\partial \Omega$.
Towards a contradiction, we assume $w^{\epsilon}\left(\vec{x}_{0}\right)=\max _{\bar{\Omega}} w^{\epsilon}>0$. Then, \vec{x}_{0} must be an interior point of Ω, and thus we have

$$
\begin{equation*}
\mathcal{L} w^{\epsilon}=\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i j} w_{i j}^{\epsilon}+\sum_{i=1}^{n} b_{i} w_{i}^{\epsilon}+c w^{\epsilon} \leqslant c w^{\epsilon}, \tag{17}
\end{equation*}
$$

at \vec{x}_{0}. Thus, $c \leqslant 0$ and $w^{\epsilon}\left(\vec{x}_{0}\right)>0$ imply $\mathcal{L} w^{\epsilon} \leqslant 0$, which contradicts to $\mathcal{L} w^{\epsilon}>0$. Namely, $w^{\epsilon} \leqslant 0$ holds in $\bar{\Omega}$. Hence, passing $\epsilon \rightarrow 0$ yields the desired result.

