
1. Calculus of variation

Definition 1. We define a symmetric positive mollifier η : Rn Ñ R by

ηp~xq “

$
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&

’

%

cn exp
´

´ 1
1´}~x}2

¯

, if }~x} ă 1

0, if }~x} ě 1,
(1)

where cn is the constant satisfying
ş

Rn ηp~xqd~x “ 1.

In addition, given ε ą 0 we define

ηεp~xq “ ε´nηpε´1~xq. (2)

Theorem 2. Let u : ΩÑ R be a smooth function. Suppose that
ż

Ω

}∇u}2dx ď
ż

Ω

}∇v}2dx, (3)

holds for all smooth functions v : ΩÑ R satisfying u “ v on BΩ. Then, ∆u “ 0 holds in Ω.

Proof. Since u is smooth, ∆u is continuous. Hence, it is enough to show ∆up~yq “ 0 at each interior

point y P Ω.

Towards a contradiction, we assume that ∆up~yq ą 0. Then, there exists some small ε ą 0 such that

∆up~xq ą 0 holds for ~x P Bεp~yq Ă Ω. We define ϕp~xq “ ηεp~x ´ ~yq and us “ u ` sϕ for each s P R.

Then, we can define a smooth function I : RÑ R by

Ipsq “
ż

Ω

}∇us}
2d~x. (4)

Since us is smooth and satisfies us “ u on BΩ, we have Ip0q ď Ipsq for all s P R. Thus, I1p0q “ 0. On

the other hand, we can directly calculate

I1psq “
d
ds

ż

Ω

}∇u}2 ` 2s∇u ¨ ∇ϕ` s2}∇ϕ}2d~x “
ż

Ω

2∇u ¨ ∇ϕ` 2s}∇ϕ}2d~x. (5)

Thus,

0 “ I1p0q “ 2
ż

Ω

∇u ¨ ∇ϕd~x “ 2
ż

Ω

ϕ∆ud~x. (6)

Hence, by definition of the mollifier η, we have

0 “ 2
ż

Bεp~yq
ϕp~xq∆up~xqd~x. (7)
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However, in the ball Bεp~yq, we know ϕ ą 0 and ∆u ą 0, which contradicts to the equation above.

Namely, ∆u can not be positive everywhere. In the same manner, ∆u can not be negative everywhere,

and thus ∆u “ 0. �

2. Elliptic equation

Given functions ai jp~xq, bip~xq, cp~xq defined over Ω, we define a linear differential operator L by

Lu “
n
ÿ

i“1

n
ÿ

j“1

ai jp~xqui jp~xq `
n
ÿ

i“1

bip~xquip~xq ` cp~xqup~xq. (8)

Suppose that there exists two positive constant 0 ă λ ď Λ such that

λ}ξ}2 ď
n
ÿ

i“1

n
ÿ

j“1

ai jp~xqξiξ j ď Λ}ξ}
2, (9)

holds for all x P Ω and ξ P Rn. Then, we call L is an uniformly elliptic operator. In addition, given a

function f : ΩÑ R

Lu “ f , (10)

is called a second order linear (uniformly) elliptic partial differential equation.

Definition 3. Given a vector v P Rn, we define directional derivatives uv and uvv by

uv “ v ¨ ∇u “ vT∇u, uvv “ vT p∇2uqv, (11)

where ∇2u is the Hessian matrix.

We recall some fact from linear algebra.

Proposition 4. Let A “ pai jq be a symmetric square matrix. Then, A is diagonalizable and has

orthonormal eigenvectors v1, ¨ ¨ ¨ , vn and corresponding real eigenvalues λ1, ¨ ¨ ¨ , λn. In particular,

A “
ÿ

i

λkvkvT
k . (12)

Moreover, we can check
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Proposition 5.
ÿ

i, j

ai jui j “
ÿ

i

λiuvivi . (13)

Proof. (12) says ai j “
ř

k λvi
kv j

k where vk “ pv1
k , ¨ ¨ ¨ , v

n
kq P Rˆ ¨ ¨ ¨ ˆ R. Hence,

ÿ

i, j

ai jui j “
ÿ

i, j,k

λvi
kv j

kui j “
ÿ

k

λkuvkvk . (14)

�

Theorem 6 (Maximum principle). Let ai jp~xq, bip~xq, cp~xq be smooth in Ω. Suppose ai jp~xq “ a jip~xq

and cp~xq ď 0 holds for all ~x P Ω. In addition, there exists some positive number λ ą 0 such that
ř

i, j ai jp~xqξiξ j ě λ|ξ|2 holds for all ~x P Ω and ξ P Rn.

Suppose that a smooth function u : Ω Ñ R satisfies Lu ě 0 in Ω and u ď 0 holds on BΩ. Then,

u ď 0 holds in Ω.

Proof. We consider a smooth function ϕp~xq “ exppαx1q for some large enough α to be determined.

Since a11p~xq ě λ ą 0 for all ~x P Ω, we have

Lϕ “ a11α
2 ` b1α` c ě λα2 ` b1α` c. (15)

b1 and c are continuous and thus bounded. Therefore, there exists some large enough α depending on

λ,max |b1|,max |c| such that Lϕ ą 0.

Now, we fix α and define K “ 1 ` max
Ω
ϕ. For each ε ą 0, we define wε “ u ` εpϕ ´ Kq, and

observe that

Lwε “ Lu` εLϕ ą 0, (16)

holds in Ω and wε ă u ď 0 holds on BΩ.

Towards a contradiction, we assume wεp~x0q “ max
Ω

wε ą 0. Then, ~x0 must be an interior point of

Ω, and thus we have

Lwε “

n
ÿ

i“1

n
ÿ

j“1

ai jwε
i j `

n
ÿ

i“1

biwε
i ` cwε ď cwε , (17)

at ~x0. Thus, c ď 0 and wεp~x0q ą 0 imply Lwε ď 0, which contradicts to Lwε ą 0. Namely, wε ď 0

holds in Ω. Hence, passing ε Ñ 0 yields the desired result. �
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