1. CALCULUS OF VARIATION

Definition 1. We define a symmetric positive mollifier $\eta : \mathbb{R}^n \to \mathbb{R}$ by

$$\eta(\vec{x}) = \begin{cases} c_n \exp\left(-\frac{1}{1 - \|\vec{x}\|^2}\right), & \text{if } \|\vec{x}\| < 1\\ 0, & \text{if } \|\vec{x}\| \ge 1, \end{cases}$$
(1)

where c_n is the constant satisfying $\int_{\mathbb{R}^n} \eta(\vec{x}) d\vec{x} = 1$.

In addition, given $\epsilon > 0$ we define

$$\eta_{\epsilon}(\vec{x}) = \epsilon^{-n} \eta(\epsilon^{-1} \vec{x}). \tag{2}$$

Theorem 2. Let $u : \overline{\Omega} \to \mathbb{R}$ be a smooth function. Suppose that

$$\int_{\Omega} \|\nabla u\|^2 dx \leqslant \int_{\Omega} \|\nabla v\|^2 dx,\tag{3}$$

holds for all smooth functions $v : \overline{\Omega} \to \mathbb{R}$ satisfying u = v on $\partial \Omega$. Then, $\Delta u = 0$ holds in $\overline{\Omega}$.

Proof. Since *u* is smooth, Δu is continuous. Hence, it is enough to show $\Delta u(\vec{y}) = 0$ at each interior point $y \in \Omega$.

Towards a contradiction, we assume that $\Delta u(\vec{y}) > 0$. Then, there exists some small $\epsilon > 0$ such that $\Delta u(\vec{x}) > 0$ holds for $\vec{x} \in B_{\epsilon}(\vec{y}) \subset \Omega$. We define $\varphi(\vec{x}) = \eta_{\epsilon}(\vec{x} - \vec{y})$ and $u_s = u + s\varphi$ for each $s \in \mathbb{R}$. Then, we can define a smooth function $I : \mathbb{R} \to \mathbb{R}$ by

$$I(s) = \int_{\Omega} \|\nabla u_s\|^2 d\vec{x}.$$
 (4)

Since u_s is smooth and satisfies $u_s = u$ on $\partial \Omega$, we have $I(0) \leq I(s)$ for all $s \in \mathbb{R}$. Thus, I'(0) = 0. On the other hand, we can directly calculate

~

$$I'(s) = \frac{d}{ds} \int_{\Omega} \|\nabla u\|^2 + 2s\nabla u \cdot \nabla \varphi + s^2 \|\nabla \varphi\|^2 d\vec{x} = \int_{\Omega} 2\nabla u \cdot \nabla \varphi + 2s \|\nabla \varphi\|^2 d\vec{x}.$$
 (5)

Thus,

$$0 = I'(0) = 2 \int_{\Omega} \nabla u \cdot \nabla \varphi d\vec{x} = 2 \int_{\Omega} \varphi \Delta u d\vec{x}.$$
 (6)

Hence, by definition of the mollifier η , we have

$$0 = 2 \int_{B_{\epsilon}(\vec{y})} \varphi(\vec{x}) \Delta u(\vec{x}) d\vec{x}.$$
(7)

However, in the ball $B_{\epsilon}(\vec{y})$, we know $\varphi > 0$ and $\Delta u > 0$, which contradicts to the equation above. Namely, Δu can not be positive everywhere. In the same manner, Δu can not be negative everywhere, and thus $\Delta u = 0$.

2. Elliptic equation

Given functions $a_{ij}(\vec{x}), b_i(\vec{x}), c(\vec{x})$ defined over $\overline{\Omega}$, we define a linear differential operator \mathcal{L} by

$$\mathcal{L}u = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij}(\vec{x}) u_{ij}(\vec{x}) + \sum_{i=1}^{n} b_i(\vec{x}) u_i(\vec{x}) + c(\vec{x}) u(\vec{x}).$$
(8)

Suppose that there exists two positive constant $0 < \lambda \leq \Lambda$ such that

$$\lambda \|\xi\|^2 \leqslant \sum_{i=1}^n \sum_{j=1}^n a_{ij}(\vec{x}) \xi_i \xi_j \leqslant \Lambda \|\xi\|^2,$$
(9)

holds for all $x \in \overline{\Omega}$ and $\xi \in \mathbb{R}^n$. Then, we call \mathcal{L} is an uniformly elliptic operator. In addition, given a function $f : \overline{\Omega} \to \mathbb{R}$

$$\mathcal{L}u = f,\tag{10}$$

is called a second order linear (uniformly) elliptic partial differential equation.

Definition 3. Given a vector $v \in \mathbb{R}^n$, we define directional derivatives u_v and u_{vv} by

$$u_{v} = v \cdot \nabla u = v^{T} \nabla u, \qquad \qquad u_{vv} = v^{T} (\nabla^{2} u) v, \qquad (11)$$

where $\nabla^2 u$ is the Hessian matrix.

We recall some fact from linear algebra.

Proposition 4. Let $A = (a_{ij})$ be a symmetric square matrix. Then, A is diagonalizable and has orthonormal eigenvectors v_1, \dots, v_n and corresponding real eigenvalues $\lambda_1, \dots, \lambda_n$. In particular,

$$A = \sum_{i} \lambda_k v_k v_k^T.$$
(12)

Moreover, we can check

$$\sum_{i,j} a_{ij} u_{ij} = \sum_{i} \lambda_i u_{\nu_i \nu_i}.$$
(13)

Proof. (12) says $a_{ij} = \sum_k \lambda v_k^i v_k^j$ where $v_k = (v_k^1, \cdots, v_k^n) \in \mathbb{R} \times \cdots \times \mathbb{R}$. Hence,

$$\sum_{i,j} a_{ij} u_{ij} = \sum_{i,j,k} \lambda v_k^i v_k^j u_{ij} = \sum_k \lambda_k u_{\nu_k \nu_k}.$$
(14)

Theorem 6 (Maximum principle). Let $a_{ij}(\vec{x}), b_i(\vec{x}), c(\vec{x})$ be smooth in $\overline{\Omega}$. Suppose $a_{ij}(\vec{x}) = a_{ji}(\vec{x})$ and $c(\vec{x}) \leq 0$ holds for all $\vec{x} \in \overline{\Omega}$. In addition, there exists some positive number $\lambda > 0$ such that $\sum_{i,j} a_{ij}(\vec{x})\xi_i\xi_j \geq \lambda |\xi|^2$ holds for all $\vec{x} \in \Omega$ and $\xi \in \mathbb{R}^n$.

Suppose that a smooth function $u : \overline{\Omega} \to \mathbb{R}$ satisfies $\mathcal{L}u \ge 0$ in $\overline{\Omega}$ and $u \le 0$ holds on $\partial\Omega$. Then, $u \le 0$ holds in $\overline{\Omega}$.

Proof. We consider a smooth function $\varphi(\vec{x}) = \exp(\alpha x_1)$ for some large enough α to be determined. Since $a_{11}(\vec{x}) \ge \lambda > 0$ for all $\vec{x} \in \overline{\Omega}$, we have

$$\mathcal{L}\varphi = a_{11}\alpha^2 + b_1\alpha + c \ge \lambda\alpha^2 + b_1\alpha + c.$$
(15)

 b_1 and c are continuous and thus bounded. Therefore, there exists some large enough α depending on λ , max $|b_1|$, max |c| such that $\mathcal{L}\varphi > 0$.

Now, we fix α and define $K = 1 + \max_{\overline{\Omega}} \varphi$. For each $\epsilon > 0$, we define $w^{\epsilon} = u + \epsilon(\varphi - K)$, and observe that

$$\mathcal{L}w^{\epsilon} = \mathcal{L}u + \epsilon \mathcal{L}\varphi > 0, \tag{16}$$

holds in $\overline{\Omega}$ and $w^{\epsilon} < u \leq 0$ holds on $\partial \Omega$.

Towards a contradiction, we assume $w^{\epsilon}(\vec{x}_0) = \max_{\overline{\Omega}} w^{\epsilon} > 0$. Then, \vec{x}_0 must be an interior point of Ω , and thus we have

$$\mathcal{L}w^{\epsilon} = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} w_{ij}^{\epsilon} + \sum_{i=1}^{n} b_i w_i^{\epsilon} + c w^{\epsilon} \leqslant c w^{\epsilon},$$
(17)

at \vec{x}_0 . Thus, $c \leq 0$ and $w^{\epsilon}(\vec{x}_0) > 0$ imply $\mathcal{L}w^{\epsilon} \leq 0$, which contradicts to $\mathcal{L}w^{\epsilon} > 0$. Namely, $w^{\epsilon} \leq 0$ holds in $\overline{\Omega}$. Hence, passing $\epsilon \to 0$ yields the desired result. \Box