1. CALCULUS OF VARIATION

Definition 1. We define a symmetric positive mollifier 7 : R” — R by

L (-5e).  iflE<1 "
0, if ¥ = 1,

where ¢, is the constant satisfying {,, 7(¥)dx = 1.

In addition, given € > 0 we define

ne(%) = € "n(e”' 7). (2)

Theorem 2. Let u : Q — R be a smooth function. Suppose that
J |Vu||*dx < f |Vv|?dx, (3)
Q Q
holds for all smooth functions v : Q—-R satisfying u = v on 0Q. Then, Au = 0 holds in Q.

Proof. Since u is smooth, Au is continuous. Hence, it is enough to show Au(y) = 0 at each interior
point y € Q.

Towards a contradiction, we assume that Au(y) > 0. Then, there exists some small € > 0 such that
Au(X) > 0 holds for ¥ € B.(¥) < Q. We define ¢(X) = n.(¥ — ¥) and u; = u + s¢ for each s € R.

Then, we can define a smooth function / : R — R by
I(s) = J |V, 2d. )
Q

Since ug is smooth and satisfies u; = u on 0Q, we have 1(0) < I(s) for all s € R. Thus, I’(0) = 0. On

the other hand, we can directly calculate
d
I'(s) = - f |Vu|* + 25Vu - Vo + 5% Vo|*dx = J 2Vu - Vo + 25| Ve|*d%. (5)
s Ja Q

Thus,

0=1(0) = 2f

Q
Hence, by definition of the mollifier 7, we have

Vu-Vedi = ZJ pAudX. (6)
Q

0— zf (D) Au()dx. ™
5.

1



2

However, in the ball B¢(y), we know ¢ > 0 and Au > 0, which contradicts to the equation above.
Namely, Au can not be positive everywhere. In the same manner, Au can not be negative everywhere,

and thus Au = 0. O

2. ELLIPTIC EQUATION

Given functions a;;(¥), b;(¥), c(¥) defined over Q, we define a linear differential operator £ by

LM_ZEa,, Ruij(X) + | bi(@Dui(¥) + c(2)u(3). (8)

i=1 j=1 i=1

Suppose that there exists two positive constant 0 < A < A such that

A)* < ZZ“U (V&€ < A€, ©)

i=1 j=1

holds for all x € Q and & € R”. Then, we call £ is an uniformly elliptic operator. In addition, given a
function f : Q — R
Lu=f, (10)

is called a second order linear (uniformly) elliptic partial differential equation.

Definition 3. Given a vector v € R”, we define directional derivatives u, and u,, by
u, =v-Vu=vVu, Uy = vT(Vzu)v, (1D
where VZu is the Hessian matrix.

We recall some fact from linear algebra.

Proposition 4. Let A = (a;;) be a symmetric square matrix. Then, A is diagonalizable and has

orthonormal eigenvectors vy, - - - , v, and corresponding real eigenvalues A1, - - - , A,. In particular,
A= Ay (12)
i

Moreover, we can check



Proposition 5.

Za,-ju,-j = Z/liuvivi' (13)
ij i
Proof. (12)) says a;j = > /lv;'cvi where v = (v,--- ,V{) € R x -+ x R. Hence,

Za,-ju,-j = 2 /lv;;viul-j = Z/lkuvkvk‘ (14)
ij

i,jk k

—

Theorem 6 (Maximum principle). Let a;;(%), bi(¥),c(X) be smooth in Q. Suppose a;;(X) = a;i(%)
and ¢(%) < 0 holds for all % € Q. In addition, there exists some positive number A > 0 such that
2 aij(¥)E€ = A|€|? holds for all ¥ € Q and & € R".

Suppose that a smooth function u : Q — R satisfies Lu = 0 in Q and u < 0 holds on 0Q. Then,
u < 0 holds in Q.

Proof. We consider a smooth function ¢(¥) = exp(ax;) for some large enough « to be determined.

Since a1 (X) = A > 0 for all X € Q, we have
Lo =and® +bia+c>= % +ba+c. (15)

b and c are continuous and thus bounded. Therefore, there exists some large enough @ depending on

A, max |b;

,max |c| such that Ly > 0.
Now, we fix @ and define K = 1 4 maxg ¢. For each € > 0, we define w* = u + €(¢ — K), and
observe that

LwS = Lu+eLy >0, (16)
holds in Q and w€ < u < 0 holds on 0Q.

Towards a contradiction, we assume w(¥p) = maxg w* > 0. Then, ¥y must be an interior point of
Q, and thus we have
n n n
LwS = Z Z aijwfj + Z biwi + cw® < cewf, 17
i=1j=1 i=1
at Xp. Thus, ¢ < 0 and w(Xp) > 0 imply Lw*® < 0, which contradicts to Lw* > 0. Namely, w® < 0

holds in Q. Hence, passing € — 0 yields the desired result. O
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